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FIG. 9. Dependence of C' on pressure at various temperatures 
(see Fig. 3 legend). 

determine Cll at pressures near the critical value except 
at To. For the other temperatures, smooth curves were 
rather arbitrarily drawn in the critical region. Shear 
waves are not attenuated ; therefore the complete pres­
sure dependence of C44 and C' could be studied. In 
measuring the velocity of shear waves we looked for 
hysteresis near the lambda line. No hysteresis was ob­
served for any of the temperatures T 1, T2, • • • , T6• 

We then made special runs at lower temperatures for 
the shear wave corresponding to C44 ' At 245.42°K a 
hysteresis in pressure of about 30 bar was observed. 
At 248.41°K this hysteresis had disappeared. The hys­
teresis shown in Fig. 1 is based on these C44 data and the 
previously mentioned shear velocities at atmospheric 
pressure. 

The application of a pressure to the crystal does not 
introduce any new source of errors which are not 
present for atmospheric-pressure measurements. How­
ever, the seal corrections are less and less accurate as 
the pressure increases because we do not know the 
characteristics of the seal under pressure. As a result, 
the random error in the elastic constants is of the 
order of ±0.05% at low pressure, but the uncertainty 
increases as the pressure increases. Both ell and C44 

have a fairly large pressure dependence which mini­
mizes the importance of changes in the seal on the 
pressure derivative d lnc/ dp. Since C' varies only 
slowly with pressure, the error in d lnC' / dp could be 
much larger especially at higher pressures. 

Constant-Volume Data 

From the data presented above it is possible to get 
several new pieces of information. Combining the known 
temperature dependence of the length of the unit cell 
at atmospheric pressure, and the pressure dependence 
of s it was possible to compute the pressure which 
must be applied to the crystal to keep its volume con­
stant. We did this for the following different values 
of the volume: V1=34.002; V2=34.150; Va=34.266; 
V4=34.428; V5=34.507; V6=34.768; V7=34.928 cm3 

mole-1• The corresponding p-T isochores are plotted 
in Fig. 1, which also shows the critical pressure p as a 
function of temperature. With these isochores we could 

evaluate the effective adiabatic elastic constants at 
constant volume. In Figs. 5 and 6 we have plotted the 
temperature dependence of C44 and C' at V1, V2, • ", V7• 

The crosses correspond to the values obtained from 
data at T1, T2, "', T5• To avoid confusion on Fig. 4 
we have plotted the temperature dependence of Cll 

only at volume V2• These constant-volume plots are 
very important from a theoretical point of view be­
cause the theories of order-disorder phenomena are 
usually valid at constant volume and not at constant 
pressure. 

DISCUSSION 

The temperature-pressure region near the lambda 
line is of primary theoretical interest in the present 
work. Data obtained far from the transition region 
can be interpreted in terms of a crystal which is com­
pletely ordered or completely disordered. Observations 
of this kind on ammonium chloride are discussed else­
where in connection with comparable data on the dis­
ordered phase of ammonium bromide.22 We only point 
out here that, away from the lambda line, the elastic 
behaviors of the ordered and of the disordered crystal 
are essentially normal and very similar to each other. 
In previous papers,6.23 the temperature dependence of 
the elastic constants at 1 atm near a lambda point has 
been discussed in terms of phenomenological Pippard 

TABLE III. Smooth-curve values of the effective adiabatic 
elastic constants Cll, C44, and C', in units of lOll dyn cm~, as a 
function of temperature and pressure. T,=250.72°K; T 2= 
265.oooK; T8=280.05°K; T4=295.02°K; T.=308 .04°K. 

p 
(kbar) Tl T2 T3 T4 T5 

Cll values 

2 4.206 4.009 4.054 4 .043 4 .032 
4 4 .547 4.318 4.227 4 .242 4 .221 
6 4 .740 4 .623 4.394 4.402 4.389 
8 4.896 4.818 4.692 4.453 4 .544 

10 5.035 4.972 4.888 4 . 765 4 . 635 
12 5.166 5 . 111 5.045 4 .955 4 .836 

C44 values 

2 1.1219 1.0335 1.0041 0 .9773 0.9568 
4 1.2065 1.1621 1.0867 1.0563 1.0353 
6 1. 2782 1.2453 1. 1961 1.1353 1.1124 
8 1.3457 1.3172 1.2800 1.2262 1.1869 

10 1.4121 1.3852 1.3521 1.3155 1.2622 
12 1.4742 1.4511 1.4238 1.3964 1.3536 

C'values 

2 1. 5212 1.5032 1.4982 1.4919 1.4870 
4 1.5308 1.5245 1.5127 1.5069 1. 5017 
6 1.5377 1.5336 1. 5280 1. 5189 1. 5139 
8 1.5438 1.5401 1. 5372 1. 5314 1.5249 

10 1.5490 1.5461 1. 5438 1.5407 1.5346 
12 1.5540 1. 5516 1.5495 1.5467 1.5442 

22 C. W. Garland and C. F. Yarnell, J. Chern. Phys. 44, 1112 
(1966). 

28 C. W. Garland, J. Chern. Phys. 41, 1005 (1964). 
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equations. The discussion below is given in terms of 
the elastic behavior of an Ising model. 

The two preceding papers4.5 present an analysis of 
the mechanical properties of an Ising model. Paper I 
is concerned with an instability very close to the critical 
point and the resulting hysteresis which may occur in 
many properties. Leaving aside for the moment this 
important but relatively narrow range where instability 
may occur, it is possible to discuss the effect of ordering 
at constant volume on the elastic constants of an Ising 
model. We have carried out a general stress-strain 
analysis of the two-dimensional Ising lattice in Paper 
II and have obtained explicit formulae for the iso­
thermal stiffnesses Cu, C44, and C' = (cu- C12) / 2. 

Now the order--{].isorder transition in ammonium chlo­
ride can be represented to a very good approximation 
by an Ising model of a simple-cubic ferromagnet. Al­
though no exact solution of the three-dimensional Ising 
problem is yet available, the formal calculation of the 
elastic properties of a simple-cubic lattice will lead to 
results very similar to those for a square lattice. We 
see from Eqs. (41), (43), and (55) of Paper II that 
the constant-volume elastic properties of a cubic Ising 
lattice can be represented by 

~=CllT- (>lC') =_1 __ vT Cr(O, H) (dJ)2 
(:JT 11" (:JdZT J2 N dv 

~ Ur(O, H) (dl-J) 
+ J N d#' 

C'= CdZ'-mG(O, H) -nUr(O, H) / N J, 

(6) 

(7) 

CM=cM.dz-1Ur(0, H)/N J, (8) 

where Cr(O, H)/N and Ur(O, H)/N are the configura­
tional heat capacity per "spin" and the Ising internal 
energy per "spin" as a function of H= J / kT, J is the 
interaction energy between nearest-neighbor ~+ ions, 
G(O, H) is the three-dimensional analog of the function 
defined by Eq. (38) of Paper II, and v is the unit cell 
volume (which replaces (j, the area per spin, used in 
Paper II). The isothermal character of the reciprocal 
compressibility 1/ (:JT and the compressional stiffness 
CnT is denoted by a superscript T; this is not necessary 
for the shear constants CM and C' since the isothermal 
and adiabatic values are identical. The subscript dt 
indicates a disordered-lattice contribution (see Paper I 
for details) which corresponds to the essentially normal 
variations observed at temperatures far above TA• The 
coefficients m, n, and t are temperature-independent 
quantities, defined by Eqs. (39), (40), and (55) of 
Paper II except that (j must be changed to v. 

For ammonium chloride, the parameter J is positive 
but dJ/dv and dl-Jjdv2 are negative with 1 d2J j d# 1« 
1 dJ/dv I. Thus, we see from Eqs. (39) and (40) of II 
that both m and n are positive. The sign of 1 is not 
known since az J / a02 is unknown (0 is the angle by 
which the equilibrium angle of the cubic unit cell is 
istorted), but Eq. (55) and the accompanying dis-

cussion in Paper II make it physically reasonable that 
1 is also positive. 

The three-dimensional behavior of Ur(O, H) and 
G(O, H) is not known, but it will be generally similar 
to that found in two dimensions. A plot of - Uri N J 
and -G as a function of temperature is given in Paper 
II for the two-dimensional case. Note that (- U r) is 
zero in the completely disordered lattice and positive 
in the ordered lattice, while (-G) is zero in both the 
completely ordered and completely disordered state but 
negative in the region of the transition. Both quantities 
are finite and continuous at all temperatures but have 
an inflection point of infinite slope at TA• In three 
dimensions, one would expect a sharpening of the vari­
ation above TA but no drastic changes. 

Thus, we can predict from Eqs. (7) and (8) the 
qualitative behavior of the shear constants CM and C'. 
Both "disordered-lattice" contributions should show a 
slow, smooth (almost linear) increase as the temper­
ature is decreased; this is based on the behavior of any 
normal ionic crystal. The term -lUr(O, H)/N J in 
Eq. (8) increases from zero in the completely dis­
ordered state to a constant positive value at tempera­
tures quite a bit below TA• This increase is especially 
rapid as the temperature is decreased through the 
lambda point (which depends on the volume since J 
is a function of V). The constant-volume CM curves in 
Fig. 5 show excellent agreement with this prediction. 
Indeed, the shape of these curves is what one would 
expect from an internal energy curve. The elastic con­
stant C' should have qualitatively the same behavior 
as CM, although they are not identical because Eq. (7) 
contains the term -mG(O, H). Figure 6 does show 
that the temperature variation of C' at constant volume 
is similar to that of eM although the effect of ordering 
is much smaller for G' and the shape of the curve 
changes with volume. 

In order to discuss Cu, let us consider the appropriate 
linear combination of Eqs. (6) and (7). Since the con­
figurational heat capacity has a sharp maximum at T A, 

the term - (vT/ J2) (CrlN) (dJ / dv) 2 will dominate the 
temperature dependence of CnT. Hence cnT should dis­
playa very pronounced minimum at the lambda point. 
From ultrasonic data we obtain cus rather than cnT, 
but these are related by 

Cns=cnT+9a2VT/C~«(:JT)2, (9) 

where a is the linear coefficient of thermal expansion. 
Although these isothermal and adiabatic stiffnesses dif­
fer considerably very close to TA, the difference between 
cuT and Cns is less than 10% when 1 T - TA 1 ",,1 0 K 
and this difference decreases as 1 T- TA 1 increases. 
Thus the observed cus should agree quite closely with 
the predicted behavior of CnT. From Fig. 4 we see that 
the shape of cus at constant volume is strikingly related 
to the shape expected from the heat-capacity curve.24 

24 F. Simon, Ann. Physik 68, 4 (1922) ; C. C. Stephenson 
(private communication). 


